4945231988_fa22a1483f_oMind Teaser VAharassment-of-time-pablo-montes


Quantum Experiment Shows How “Time” Doesn’t Exist As We Think It Does (Mind-Altering)

By: Arjun Walia

The concept of “time” is a weird one, and the world of quantum physics is even weirder. There is no shortage of observed phenomena which defy our understanding of logic, bringing into play thoughts, feelings, emotions – consciousness itself, and a post-materialist view of the universe. This fact is no better illustrated than by the classic double slit experiment, which has been used by physicists (repeatedly) to explore the role of consciousness and its role in shaping/affecting physical reality. (source) The dominant role of a physical material (Newtonian) universe was dropped the second quantum mechanics entered into the equation and shook up the very foundation of science, as it continues to do today.

“I regard consciousness as fundamental. I regard matter as derivative from consciousness. We cannot get behind consciousness. Everything that we talk about, everything that we regard as existing, postulating consciousness.”  –  Max Planck, theoretical physicist who originated quantum theory, which won him the Nobel Prize in Physics in 1918

There is another groundbreaking, weird experiment that also has tremendous implications for understanding the nature of our reality, more specifically, the nature of what we call “time.”

It’s known as the “delayed-choice” experiment, or “quantum eraser,” and it can be considered a modified version of the double slit experiment.

To understand the delayed choice experiment, you have to understand the quantum double slit experiment.

In this experiment, tiny bits of matter (photons, electrons, or any atomic-sized object) are shot towards a screen that has two slits in it. On the other side of the screen, a high tech video camera records where each photon lands. When scientists close one slit, the camera will show us an expected pattern, as seen in the video below. But when both slits are opened, an “interference pattern” emerges – they begin to act like waves. This doesn’t mean that atomic objects are observed as a wave (even though it recently has been observed as a wave), they just act that way. It means that each photon individually goes through both slits at the same time and interferes with itself, but it also goes through one slit, and it goes through the other. Furthermore, it goes through neither of them. The single piece of matter becomes a “wave” of potentials, expressing itself in the form of multiple possibilities, and this is why we get the interference pattern.

How can a single piece of matter exist and express itself in multiple states, without any physical properties, until it is “measured” or “observed?” Furthermore, how does it choose which path, out of multiple possibilities, it will take?

Then, when an “observer” decides to measure and look at which slit the piece of matter goes through, the “wave” of potential paths collapses into one single path. The particle goes from becoming, again, a “wave” of potentials into one particle taking a single route. It’s as if the particle knows it’s being watched. The observer has some sort of effect on the behavior of the particle.

You can view a visual demonstration/explanation of the double slit experiment here.

This quantum uncertainty is defined as the ability, “according to the quantum mechanic laws that govern subatomic affairs, of a particle like an electron to exist in a murky state of possibility — to be anywhere, everywhere or nowhere at all — until clicked into substantiality by a laboratory detector or an eyeball.” (New York Times)

According to physicist Andrew Truscott, lead researcher from a study published by the Australian National University, the experiment suggests that “reality does not exist unless we are looking at it.” It suggests that we are living in a holographic-type of universe. (source)

Delayed Choice/Quantum Eraser/Time

So, how is all of this information relevant to the concept of time? Just as the double slit experiment illustrates how factors associated with consciousness collapse the quantum wave function (a piece of matter existing in multiple potential states) into a single piece of matter with defined physical properties (no longer a wave, all those potential states collapsed into one), the delayed choice experiment illustrates how what happens in the present can change what happens(ed) in the past. It also shows how time can go backwards, how cause and effect can be reversed, and how the future caused the past.

Like the quantum double slit experiment, the delayed choice/quantum eraser has been demonstrated and repeated time and time again. For example, Physicists at The Australian National University (ANU) have conducted John Wheeler’s delayed-choice thought experiment, the findings were recently published in the journal Nature Physics. (source)

In 2007 (Science 315, 966, 2007), scientists in France shot photons into an apparatus and showed that their actions could retroactively change something which had already happened.

“If we attempt to attribute an objective meaning to the quantum state of a single system, curious paradoxes appear: quantum effects mimic not only instantaneous action-at-a-distance, but also, as seen here, influence of future actions on past events, even after these events have been irrevocably recorded.” – Asher Peres, pioneer in quantum information theory (source)(source)(source)

The list literally goes on and on, and was first brought to the forefront by John Wheeler, in 1978, which is why I am going to end this article with his explanation of the delayed choice experiment. He believed that this experiment was best explained on a cosmic scale.

Cosmic Scale Explanation

He asks us to imagine a star emitting a photon billions of years ago, heading in the direction of planet Earth. In between, there is a galaxy. As a result of what’s known as “gravitational lensing,” the light will have to bend around the galaxy in order to reach Earth, so it has to take one of two paths, go left or go right. Billions of years later, if one decides to set up an apparatus to “catch” the photon, the resulting pattern would be (as explained above in the double slit experiment) an interference pattern. This demonstrates that the photon took one way, and it took the other way.

One could also choose to “peek” at the incoming photon, setting up a telescope on each side of the galaxy to determine which side the photon took to reach Earth. The very act of measuring or “watching” which way the photon comes in means it can only come in from one side. The pattern will no longer be an interference pattern representing multiple possibilities, but a single clump pattern showing “one” way.

What does this mean? It means how we choose to measure “now” affects what direction the photon took billions of years ago. Our choice in the present moment affected what had already happened in the past….

This makes absolutely no sense, which is a common phenomenon when it comes to quantum physics. Regardless of our ability make sense of it, it’s real.

This experiment also suggests that quantum entanglement (which has also been verified, read more about that here) exists regardless of time. Meaning two bits of matter can actually be entangled, again, in time.

Time as we measure it and know it, doesn’t really exist.

(For Sources go to article link below.)



Top: Gil Bruvel

Middle: Visual Alchemy

Bottom: Pablo Montes

Flat Universe

11377227_1084191471609830_8263562936521086604_nOpening heart11377227_1084191471609830_8263562936521086604_n

Shine On You Crazy Diamond

Presented by

Robert Adler


People have wrestled with the mystery of why the universe exists for thousands of years. Pretty much every ancient culture came up with its own creation story – most of them leaving the matter in the hands of the gods – and philosophers have written reams on the subject. But science has had little to say about this ultimate question.

However, in recent years a few physicists and cosmologists have started to tackle it. They point out that we now have an understanding of the history of the universe, and of the physical laws that describe how it works. That information, they say, should give us a clue about how and why the cosmos exists.

Their admittedly controversial answer is that the entire universe, from the fireball of the Big Bang to the star-studded cosmos we now inhabit, popped into existence from nothing at all. It had to happen, they say, because “nothing” is inherently unstable.

This idea may sound bizarre, or just another fanciful creation story. But the physicists argue that it follows naturally from science’s two most powerful and successful theories: quantum mechanics and general relativity.

Here, then, is how everything could have come from nothing.

Particles from empty space

First we have to take a look at the realm of quantum mechanics. This is the branch of physics that deals with very small things: atoms and even tinier particles. It is an immensely successful theory, and it underpins most modern electronic gadgets.

Quantum mechanics tells us that there is no such thing as empty space. Even the most perfect vacuum is actually filled by a roiling cloud of particles and antiparticles, which flare into existence and almost instantaneously fade back into nothingness.

These so-called virtual particles don’t last long enough to be observed directly, but we know they exist by their effects.

Space-time, from no space and no time

From tiny things like atoms, to really big things like galaxies. Our best theory for describing such large-scale structures is general relativity, Albert Einstein’s crowning achievement, which sets out how space, time and gravity work.

Relativity is very different from quantum mechanics, and so far nobody has been able to combine the two seamlessly. However, some theorists have been able to bring the two theories to bear on particular problems by using carefully chosen approximations. For instance, this approach was used by Stephen Hawking at the University of Cambridge to describe black holes.

“In quantum physics, if something is not forbidden, it necessarily happens”

One thing they have found is that, when quantum theory is applied to space at the smallest possible scale, space itself becomes unstable. Rather than remaining perfectly smooth and continuous, space and time destabilize, churning and frothing into a foam of space-time bubbles.

In other words, little bubbles of space and time can form spontaneously. “If space and time are quantized, they can fluctuate,” says Lawrence Krauss at Arizona State University in Tempe. “So you can create virtual space-times just as you can create virtual particles.”

What’s more, if it’s possible for these bubbles to form, you can guarantee that they will. “In quantum physics, if something is not forbidden, it necessarily happens with some non-zero probability,” says Alexander Vilenkin of Tufts University in Boston, Massachusetts.

A universe from a bubble

So it’s not just particles and antiparticles that can snap in and out of nothingness: bubbles of space-time can do the same. Still, it seems like a big leap from an infinitesimal space-time bubble to a massive universe that hosts 100 billion galaxies. Surely, even if a bubble formed, it would be doomed to disappear again in the blink of an eye?

If all the galaxies are flying apart, they must once have been close together

Actually, it is possible for the bubble to survive. But for that we need another trick: cosmic inflation.

Most physicists now think that the universe began with the Big Bang. At first all the matter and energy in the universe was crammed together in one unimaginably small dot, and this exploded. This follows from the discovery, in the early 20th century that the universe is expanding. If all the galaxies are flying apart, they must once have been close together.

Inflation theory proposes that in the immediate aftermath of the Big Bang, the universe expanded much faster than it did later. This seemingly outlandish notion was put forward in the 1980s by Alan Guth at the Massachusetts Institute of Technology, and refined by Andrei Linde, now at Stanford University.

As weird as it seems, inflation fits the facts

The idea is that, a fraction of a second after the Big Bang, the quantum-sized bubble of space expanded stupendously fast. In an incredibly brief moment, it went from being smaller than the nucleus of an atom to the size of a grain of sand. When the expansion finally slowed, the force field that had powered it was transformed into the matter and energy that fill the universe today. Guth calls inflation “the ultimate free lunch”.

As weird as it seems, inflation fits the facts rather well. In particular, it neatly explains why the cosmic microwave background, the faint remnant of radiation left over from the Big Bang, is almost perfectly uniform across the sky. If the universe had not expanded so rapidly, we would expect the radiation to be patchier than it is.

The universe is flat and why that’s important

Inflation also gave cosmologists the measuring tool they needed to determine the underlying geometry of the universe. It turns out this is also crucial for understanding how the cosmos came from nothing.

Einstein’s theory of general relativity tells us that the space-time we live in could take three different forms. It could be as flat as a table top. It could curve back on itself like the surface of a sphere, in which case if you travel far enough in the same direction you would end up back where you started. Alternatively, space-time could curve outward like a saddle. So which is it?

There is a way to tell. You might remember from maths class that the three angles of a triangle add up to exactly 180 degrees. Actually your teachers left out a crucial point: this is only true on a flat surface. If you draw a triangle on the surface of a balloon, its three angles will add up to more than 180 degrees. Alternatively, if you draw a triangle on a surface that curves outward like a saddle, its angles will add up to less than 180 degrees.

So to find out if the universe is flat, we need to measure the angles of a really big triangle. That’s where inflation comes in. It determined the average size of the warmer and cooler patches in the cosmic microwave background. Those patches were measured in 2003, and that gave astronomers a selection of triangles. As a result, we know that on the largest observable scale our universe is flat.

Read the rest here at BBC



 . *✿ღ✿ღ.¸¸